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6 Executive Summary

This deliverable documents the Machine Learning (ML) and Natural Language Processing (NLP)
models developed for the POLINE pilot tool and their results. In particular, the deliverable reports
the experiments and the resulting models for achieving the WP3 task of Extraction of Principles
(T3.2). This task aims at extracting principles of law in the documents produced in WP2, and connect
them with related VAT concepts of the ontology. The produced models are able to process all the
languages contemplated by POLINE: Italian, Bulgarian, Swedish and English.

The following table shows the data composition of the various datasets. For further information on
the data and annotation process we refer to D2.2 and D2.3.

Table 1: Composition of the datasets

Language Manually Annotated Auto. Annotated Total
Buag Test set Validation set Train set
English (EU) 11 10 80 101
Bulgarian 20 20 80 120
Italian 19 19 178 216
Swedish 11 11 77 99

The developed ML models are available in, and power, the POLINE pilot tool, specifically the
Customised Detection Module. This module allows recipients of VAT measures to identify judicial
principles of law applied in a specific case, helping them to assess whether VAT law is correctly
applied.
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7 Automated extraction of JIFs

We approached the automatic extraction of JIFs using machine learning models fine-tuned on our
training set. We framed the task as a binary classification: given a paragraph/sentence, classify it as
a JIF or not. Experiments were conducted using the train-validation-test splits described in Table 1,
determined at the document level so that paragraphs from the same document would never split
across partitions. Note that the validation and test splits were entirely composed of manually
annotated documents, while the training set was composed of automatically annotated data. This
process ensured that the validation and test sets maintained the highest quality and avoided
evaluating machine learning models using Al-annotated data.

A notable difference between English and the other languages is the unit of classification. In the
English texts, the unit of classification is the paragraph, since the documents are clearly divided into
numbered sections. Each paragraph is assigned a binary label (JIF or non-JIF). For the other
languages, however, such a paragraph-level segmentation is not available. In these cases, we use
the sentence as the unit of classification®: each sentence is labeled depending on whether it belongs
to a possibly larger JIF or not. The task therefore remains binary in all languages, but for non-English
texts the model only has access to more fine-grained, and thus more partial, information. To address
this limitation, we additionally introduce a context-aware classification setting, where the model is
given not only the target sentence but also its immediate context, i.e., the preceding and following
sentences in the text.

Here we report, for each language, the list of models we experimented with.
English:

e DistilRoBERTa [9]: a distilled version of the RoBERTa-base model. It follows the same training
procedure as DistilBERT, and it is, on average, twice as fast as RoBERTa-base.

e DeBERTa [3]: an improvement of the BERT and RoBERTa models, using disentangled
attention and enhanced mask decoder.

e LEGAL-BERT [4]: a family of BERT models for the legal domain, intended to assist legal NLP
research, computational law, and legal technology applications.

e LinearSVC with TF-IDF features

Bulgarian:

e SlavicBERT [1]: a version of BERT initialized on Multilingual BERT and trained on Russian
News and four Wikipedias: Bulgarian, Czech, Polish, and Russian.

! Sentence segmentation was performed with a customized spacy pipeline that takes into account the common
abbreviations of each language legal text, to avoid oversegmentation.
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e BERT multilingual [5]: a pretrained model on the top 104 languages with the largest
Wikipedia, using a masked language modeling objective.

e LinearSVC with TF-IDF features

Italian:
e [talian BERT [2]: an Italian version of BERT, trained on Italian Wikipedia and various texts
from the OPUS corpora collection.

e ITALIAN-LEGAL-BERT [7]: a model based on Italian BERT with additional pre-training on
Italian civil law corpora.

e LinearSVC with TF-IDF features

Swedish:

e Swedish BERT [8]: a BERT trained with the same hyperparameters as first published by
Google, with text from various Swedish books, news, government publications, Wikipedia
and internet forums.

e  BERT multilingual.
e LinearSVC with TF-IDF features

For Bulgarian and Swedish a multilingual model was used due to the lack of monolingual models in
these languages.

The BERT models were fine-tuned for 10 epochs with early stopping, a learning rate of 2e-5 and a
batch size of 8. For reference, we also report the performance of two baselines: a classifier that
outputs a random class (Random baseline) and one that always predicts the majority class (Majority
baseline).

8 Results for the automated extraction of JIFs

8.1 English dataset

Table 2 reports precision, recall and F1 scores obtained by each classifier for each class, as well as
their macro-average. The highest macro F1 score of 0.76 was achieved by both DistilRoBERTa and
LEGAL-BERT, while DeBERTa reaches a score of 0.74. LEGAL-BERT vyielded the best F1 score on the
positive class (0.76) followed by DeBERTa and DistilRoBERTa. DeBERTa is the best model for what
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concerns recall on the positive class, with a score of 0.82, while DistilRoBERTa reaches the maximum
precision score of 0.75. For all models except DistilRoBERTa, precision is higher for the negative class
while recall is higher for the positive class. LinearSVC’s performance is not much inferior to state-of-
the-art models, suggesting that lexical cues play a crucial role in the task.

In general, we consider LEGAL-BERT to be the best model: it has the best macro F1 score as well as
the best F1 score in the positive class. Moreover, it has the second-best recall score over the positive
class, close to the best. This is particularly relevant to our purpose because, in a tool intended for
legal practitioners, users would want to be sure they will find what they are looking for, and if a JIF
is not there, they cannot know that it is missing. In contrast, they can discard a few undesired extra
paragraphs without too much effort.

Table 2: Results for the JIF classification task on the English (EU) dataset

Precision Recall F1 score
Model

yes no avg yes no avg yes no avg
Majority 0.00 0.54 0.27 0.00 1.00 0.50 0.00 0.70 0.35
Random 0.46 0.53 0.49 0.49 0.50 0.49 0.47 0.51 0.49
LinearSVC 0.68 0.76 0.72 0.75 0.70 0.72 0.71 0.73 0.72
LEGAL-BERT 0.73 0.82 0.77 0.80 0.74 0.77 0.76 0.77 0.76
DistilRoBERTa 0.75 0.79 0.77 0.75 0.78 0.77 0.75 0.78 0.76
DeBERTa 0.69 0.82 0.75 0.82 0.68 0.75 0.75 0.74 0.74

8.2 Bulgarian dataset

Table 3 reports precision, recall and F1 scores obtained by each classifier for each class, as well as
their macro-average. The best macro F1 score of 0.66 is obtained by SlavicBERT in the context-aware
setting. However, this setting degrades the performance of BERT multilingual from 0.64 to 0.60,
showing that having access to context is not always the best option. SlavicBERT with context obtains
also the best F1 score over the positive class (0.43), and the best recall over the positive class (0.46).
The highest precision of 0.42 is instead obtained by BERT multilingual without context. As in the
English dataset, LinearSVC exhibits not much lower performance compared to BERT models,
suggesting the relevance of lexical features in this context.

We observe that classification performance is consistently lower with respect to the English
language. We hypothesize that this is due to the difference in segmentation: while English texts
allow paragraph-level classification, in the other languages only sentence-level units are available,
which provide more limited information and likely make the task harder.
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Table 3: Results for the JIF classification task on the Bulgarian dataset

Precision Recall F1 score
Model
yes no avg yes no avg yes no avg
Majority 0.00 0.85 0.43 0.00 1.00 0.50 0.00 0.92 0.46
Random 0.16 0.87 0.51 0.55 0.51 0.53 0.25 0.64 0.44
LinearSVC 0.42 0.87 0.65 0.19 0.96 0.57 0.26 0.91 0.59
SlavicBERT 0.39 0.89 0.64 0.38 0.90 0.64 0.38 0.90 0.64
BERT multil. 0.42 0.89 0.66 0.35 0.92 0.63 0.38 0.90 0.64
with context
SlavicBERT 0.40 0.91 0.65 0.46 0.88 0.67 0.43 0.89 0.66
BERT multil. 0.39 0.88 0.63 0.24 0.93 0.59 0.30 0.91 0.60

8.3 Italian dataset

Table 4 reports precision, recall and F1 scores obtained by each classifier for each class, as well as
their macro-average. The highest macro F1 score of 0.62 is obtained by ITALIAN-LEGAL-BERT in both
context-aware and non context-aware settings. However, we consider the context-aware setting to
be slightly better because it has the best F1 score on the positive class (0.32). Italian BERT exhibits
slightly lower performance with respect to ITALIAN-LEGAL-BERT, higher in the setting without
context.

This is the only dataset where LinearSVC achieves low performance, comparable to the majority
baseline, suggesting that the Italian judgments employ a less standardized language and that lexical
features alone are insufficient for accurate classification.

Moreover, as already observed for the Bulgarian dataset, classification performance is consistently
lower with respect to the English language, and we attribute this mostly to the difference in
segmentation.

Table 4: Results for the JIF classification task on the Italian dataset

Precision Recall F1 score
yes no avg yes no avg yes no avg
Majority 0.00 0.91 0.45 0.00 1.00 0.50 0.00 0.95 0.48
Random 0.10 0.92 0.51 0.54 0.49 0.52 0.17 0.64 0.40
LinearSVC 0.06 0.91 0.49 0.01 0.98 0.50 0.02 0.94 0.48
Italian BERT 0.26 0.93 0.60 0.25 0.93 0.59 0.26 0.93 0.59
IT-LEGAL-BERT 0.28 0.93 0.61 0.35 0.91 0.63 0.31 0.92 0.62
with context
Italian BERT 0.24 0.92 0.58 0.16 0.95 0.56 0.19 0.93 0.56
IT-LEGAL-BERT 0.29 0.94 0.61 0.38 0.91 0.64 0.32 0.92 0.62

Model
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8.4 Swedish dataset

Table 5 reports precision, recall and F1 scores obtained by each classifier for each class, as well as
their macro-average. The highest macro F1 score of 0.66 is obtained by Swedish BERT in the context-
aware setting. It also reaches the best f1 score on the positive class (0.37), while the highest score
on the negative class belongs to the majority baseline. BERT multilingual with context is the second-
best model, with a macro F1 score only 0.01 point lower than Swedish BERT (0.65). Both models
without context and LinearSVC reaches comparable macro F1 scores, ranging from 0.60 to 0.62.

As previously observed with Bulgarian, the multilingual model performs worse than the language-
specific one. This is a common finding in the literature, where multilingual models often
underperform compared to monolingual counterparts, especially when trained on languages with
limited resources or less standardized linguistic features [6,10]. Additionally, research indicates that
adding large amounts of multilingual data can harm performance, likely due to limited model
capacity, a phenomenon known as the 'curse of multilinguality’ [11].

Moreover, as already observed for the Bulgarian and Italian datasets, classification performance is
consistently lower with respect to the English language, and we attribute this mostly to the
difference in segmentation.

Table 5: Results for the JIF classification task on the Swedish dataset

Precision Recall F1 score
Model
yes no avg yes no avg yes no avg
Majority 0.00 0.93 0.47 0.00 1.00 0.50 0.00 0.97 0.48
Random 0.08 0.95 0.52 0.62 0.51 0.57 0.15 0.66 0.41
LinearSVC 0.30 0.94 0.62 0.20 0.97 0.58 0.24 0.96 0.60
Swedish BERT 0.23 0.96 0.60 0.49 0.88 0.69 0.31 0.92 0.62
BERT multil. 0.23 0.95 0.59 0.32 0.92 0.62 0.27 0.93 0.60
with context
Swedish BERT 0.29 0.96 0.63 0.52 0.91 0.71 0.37 0.94 0.66
BERT multil. 0.30 0.96 0.63 0.46 0.92 0.69 0.36 0.94 0.65
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9 Linking JIFs to ontology concepts

The task of linking JIFs to ontology concepts starts from the extracted JIFs and aims at classifying
them into one or more of the ontology concepts developed in Deliverable D2.1. It is therefore a
multi-label and multi-class classification task.

Here we focus our analysis on the English dataset, since it is the only one with gold labels for this
task, and therefore the only one where an evaluation of the models is possible. We focus on a subset
of the ontology, particularly on the higher-level concepts: the division of the JIF concept into non-
vat or value added tax, and the subelements of the latter. Of these subelements we consider the
ones with at least 10 examples in the test set.

Table 6 shows the composition of our dataset. The test set is manually tagged (gold), while the
validation and train set are automatically annotated with Claude 3.7. Sonnet.

Table 6: composition of the dataset of the ontology concepts used in our experiments.

ontology concept test val | train
non-vat 12 11 74
value added tax 90 156 996
exemptions 23 74 451
principle of fiscal neutrality 12 24 107

principle that national law must be interpreted

. . . 13 16 47
in conformity with eu law

taxable amount 34 48 303
taxable persons 19 10 134
taxable transactions 13 9 192

We fine-tune LEGAL-BERT, which was the best model for the extraction task, for 10 epochs with
early stopping, a learning rate of 2e-5 and a batch size of 8.

We report in Table 7 the results of the classification task, with precision, recall and F1 score of each
class and their macro average. As concerns the higher-level division in vat and non-vat, the non-vat
minority class obtains perfect precision but low recall, which leads to an F1 score of 0.50. The vat
sub-elements reach good scores, ranging from 0.67 of taxable transaction, to 0.92 of taxable
persons, with the exception of principle that national law must be interpreted in conformity with eu
law, which obtains a score of 0.00 in both precision and recall. This low result could be attributed to
the lower representation of this concept in the training set, with only 47 examples.
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Despite the low result for this class, the task reaches a macro F1 score of 0.69 with 0.75 precision
and 0.67 recall.

Table 7: results for the ontology concepts classification

ontology concept precision | recall | F1score

non-vat 1.00 0.33 0.50

value added tax 0.92 1.00 0.96
exemptions 0.78 0.91 0.84
principle of fiscal neutrality 0.75 0.75 0.75

principle that national law must be interpreted

in conformity with eu law 0.00 0.00 0.00
taxable amount 0.87 0.82 0.85
taxable persons 0.94 0.89 0.92
taxable transactions 0.73 0.62 0.67

macro 0.75 0.67 0.69
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10 Conclusion

In this deliverable, we report the ML models developed for the Extraction of Principles task in the
four languages of the POLINE project. For each language, we compare a set of fine-tuned BERT
models with an SVM using lexical features. We observe that classification performance in non-
English languages is consistently lower compared to English. We attribute this primarily to
differences in segmentation, which in turn arise from variations in text structure. Specifically, while
English judgments are clearly structured and allow for paragraph-level classification, the other
languages only permit sentence-level segmentation, which provides more limited information and
likely increases the difficulty of the task. As for the linking of JIFs to ontology concepts, we focus our
analysis on English and on the main concepts of the ontology - those sufficiently represented in the
annotated dataset - achieving good results.
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